Master 2.17)

Extra Practice 1

Lesson 2.1: What Is a Power?

1. Identify the base of each power. **a)** 6^3 **b)** 2^7 **c)** $(-5)^4$ **d)** -7^0

2. Use repeated multiplication to show why 3^5 is not the same as 5^3 .

3. Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^{4}				
$(-10)^3$				
	-6	2		
			$1 \times 1 \times 1 \times 1 \times 1$	

- 4. Write each product as a power, then evaluate.
 - a) 6×6 b) $3 \times 3 \times 3 \times 3 \times 3 \times 3$ c) $10 \times 10 \times 10 \times 10$ d) $-(8 \times 8 \times 8)$ e) (-8)(-8)(-8)f) -(-8)(-8)(-8)
- 5. Write each power as repeated multiplication, then evaluate. a) 7^5 b) 4^6 c) -9^3 d) $(-5)^5$
- 6. Evaluate each power. For each power:
 - Are the brackets needed?
 - If your answer is yes, what purpose do the brackets serve? **a)** $(-6)^5$ **b)** $-(6)^5$ **c)** $-(-6)^5$ **d)** (-6^5)
- 7. Predict whether each answer is positive or negative, then evaluate. a) $(-3)^2$ b) $(-3)^3$ c) -3^2 d) $-(-3)^3$
- 8. Is the value of -2^4 different from the value of $(-2)^4$? Explain.
- 9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is \$60.00.
 - a) Express the number of stamps as a power and in standard form.
 - **b)** Use grid paper. Draw a picture to represent this power.
 - c) What is the value of one stamp?

Name	
------	--

Date

M	aster 2.18	Extra Practi	ce 2
Le	sson 2.2: Pov	wers of Ten and	the Zero Exponent
1.	Evaluate each p a) 4 ⁰ d) 1 ⁰	b) 23^{0} e) -1^{0}	c) $(-6)^0$ f) $(-1)^0$
2.	Write each nun a) 10 000 d) ten	nber as a power of 1 b) 1 000 000 e) 1	0. c) one billion
3.	Use powers of a) 700 000 00 c) 77 077	10 to write each nun 0 000	nber. b) 7000 d) 7 000 007
4.	Write each num a) (8×10^5) b) $(9 \times 10^7) +$ c) $(2 \times 10^3) +$	nber in standard form $(9 \times 10^{6}) + (5 \times 10^{5})$ $(2 \times 10^{2}) + (6 \times 10^{6})$	n.)

- c) $(2 \times 10^{\circ}) + (2 \times 10^{\circ}) + (6 \times 10^{\circ})$ d) $(5 \times 10^{\circ}) + (4 \times 10^{8}) + (8 \times 10^{\circ}) + (3 \times 10^{4})$
- 5. Write these numbers in standard form, then order them from least to greatest. fifty-five hundred $50\ 500\ (5 \times 10^6) + (5 \times 10^0)$ five hundred thousand $5 \times 10^4\ 500\ 500$
- 6. a) Complete this table for a base of 10.

Exponent	Power	Standard Form
6	10 ⁶	
5		
4		
3		
2		
1		
0		

b) Use patterns to describe why the power with an exponent of 0 is equal to 1.

Master 2.19

Extra Practice 3

Le	Lesson 2.3: Order of Operations with Powers							
1.	Eva	aluate.						
	a)	$5^2 + 3$	b)	$5^2 - 3$	c)	$5 + 3^2$	d)	$5-3^{2}$
	e)	$(5+3)^2$	f)	$(5-3)^2$	g)	$5^2 + 3^2$	h)	$5^2 - 3^2$
2.	Eva	aluate.						
	a)	$4^3 \times 2$	b)	$4^3 \div 2$	c)	4×2^3	d)	$4 \div 2^3$
	e)	$(4 \times 2)^3$	f)	$(4 \div 2)^3$	g)	$4^3 \times 2^3$	h)	$4^3 \div 2^3$
3.	Eva	aluate.						
	a)	$(18 \div 3^2 + 1)^4$ –	- 4 ²	b) $3^3 \div 9$	$(3^{0} -$	2 ²) c)	$(12^2 +$	$(5^3)^0 - 2[(-3)^3]$
	d)	$(7-5)^3 \times (8+2)^3$	2) ⁴	e) $(4^2 \times 1)$	$(5)^{2}$	f)	[(-3) ⁴	$-(-2)^3]^0 \div [(-4)^3 - (-3)^2]^0$
4.	Ins	ert brackets to n	nake e	each statement 1	rue.			
	a)	$15 \div 3 + 2 \times 4^2$	- 5 =	43	b)	15 ÷ 3 + 2 >	$< 4^2 - 5$	= 27
	c)	$15 \div 3 + 2 \times 4^2$	- 5 =	107	d)	15 ÷ 3 + 2 >	$< 4^2 - 5$	= 64
5.	The Ian	e formula for the	e volu salsa a	me, V , of a cyliand stores it in i	inder	with height	t, h , and s of 4 cr	radius, r, is $V = \pi r^2 h$.
	She uses this expression to determine the number of jars she will need: $\frac{3000}{(t)^2 + t^2}$							
	Ab	out how many ja	ars wi	ll Janet need fo	or the	salsa?		$\mathcal{I}(4) \times 10$
6.	Aft (-4 19.	ab, Shane, and $(-9)^2 - 3[(-9) \div 3]^2$	Kyra ; ² Afta	got different an b's answer was	swer 97, 1	s when they Shane's ans	v evalua wer wa	ted this expression: s 43, and Kyra's answer was
	a) b)	Show the corre Show and expla Where did each	ct sol ain ho 1 stud	ution. w the students ent go wrong?	who	got the wro	ng ansv	ver may have evaluated.

Master 2.22)

Extra Practice Sample Answers

Extra Practice 1 – Master 2.17

Lesson 2.1

- **1.** a) 6 b) 2 c) -5 d) 7
- **2.** $3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$ and $5^3 = 5 \times 5 \times 5 = 125$

3.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4 ⁴	4	4	$4 \times 4 \times 4 \times 4$	256
(-10) ³	-10	3	(–10)(–10) (–10)	-1000
$(-6)^2$	-6	2	(6)(6)	36
1 ⁵	1	5	1 × 1 × 1 × 1 × 1	1

- **4. a)** $6^2 = 36$ **b)** $3^6 = 729$ **c)** $10^4 = 10\ 000$ **d)** $-8^3 = -512$ **e)** $(-8)^3 = -512$ **f)** $-(-8)^3 = 512$
- a) 7 × 7 × 7 × 7 × 7 = 16 807
 b) 4 × 4 × 4 × 4 × 4 × 4 = 4096
 c) -9 × 9 × 9 = -729
 - **d)** (-5)(-5)(-5)(-5)(-5) = -3125
- 6. a) $(-6)^5 = -7776$; the brackets are needed; they_indicate that the base is -6.
 - **b)** $-(6)^5 = -7776$; the brackets are not needed; the base is 6 and the power is negative.
 - c) $-(-6)^5 = 7776$; the brackets are needed; they indicate that the base is -6 and the sign of the expression is opposite to the sign of the value of $(-6)^5$.
 - **d)** $(-6^5) = -7776$; the brackets are not needed.
- a) (-3)² is positive because the answer is the product of an even number of negative integers: 9

- b) (-3)³ is negative because the answer is the product of an odd number of negative integers: -27
- c) -3² is negative because the answer is the opposite of the product of an even number of positive integers: -9
- **d)** $-(-3)^3$ is positive because the answer is the opposite of the product of an odd number of negative integers: 27
- 8. Yes, their values are different; $-2^4 = -2 \times 2 \times 2 \times 2 \times 2 = -16$ and $(-2)^4 = (-2)(-2)(-2)(-2) = 16$
- 9. a) 10² = 100
 b) Students should draw a 10 by 10 square on grid paper.
 - **c)** 60¢ or \$0.60

Extra Practice 2 – Master 2.18

Lesson 2.2

1.	a) 1	b) 1	c) 1	
	d) 1	e) -1	f) 1	

- **2.** a) 10^4 b) 10^6 c) 10^9 d) 10^1 e) 10^0
- **3.** a) 7×10^{11} b) 7×10^{3} c) $(7 \times 10^{4}) + (7 \times 10^{3}) + (7 \times 10^{1}) + (7 \times 10^{0})$ d) $(7 \times 10^{6}) + (7 \times 10^{0})$
- a) 800 000
 b) 99 500 000
 c) 2206
 d) 400 530 008
- In standard form: 5500, 50 500, 5 000 005, 500 000, 50 000, 500 500
 From least to greatest: 5500, 50 000, 50 500, 500 000, 500 500, 5 000 005

Master 2.23

Extra Practice Sample Answers

```
6. a)
```

Exponent	Power	Standard Form
6	10 ⁶	1 000 000
5	10 ⁵	100 000
4	10 ⁴	10 000
3	10 ³	1000
2	10 ²	100
1	10 ¹	10
0	10 ⁰	1

b) In the 2^{nd} column, the exponents are decreasing by 1 each time. In the 3^{rd} column, the number of zeros after the 1 decreases by 1; each time we divide by 10 to get the number below, and in the last row: $10 \div 10 = 10^{0} = 1$

Extra Practice 3 – Master 2.19

Lesson 2.3

1.	a) 28	b) 22	c) 14
	d) –4	e) 64	f) 4
	q) 34	h) 16	-

- **2.** a) 128 b) 32 c) 32 d) ¹/₂
 e) 512 f) 8 g) 512 h) 8
- **3.** a) 65 b) -9 c) 55 d) 80 000 e) 256 f) 1
- 4. a) $15 \div (3+2) \times 4^2 5 = 43$ b) $15 \div 3 + 2 \times (4^2 - 5) = 27$ c) $(15 \div 3 + 2) \times 4^2 - 5 = 107$ d) $15 \div 3 + (2 \times 4)^2 - 5 = 64$
- 5. About 6 jars
- 6. a) The correct solution: $(-4)^2 - 3[(-9) \div 3]^2 = (-4)^2 - 3(-3)^2 = 16$ - 3(9) = 16 - 27 = -11
 - b) Shane probably thought that $(-3)^2 = -9$; here is a possible incorrect solution: $(-4)^2 - 3[(-9) \div 3]^2 = (-4)^2 - 3(-3)^2 = 16$

- 3(-9) = 16 + 27 = 43

Aftab probably multiplied –3 and –9 before evaluating in the brackets and applying the exponent. Here is a possible incorrect solution: $(-4)^2 - 3[(-9) \div 3]^2 = 16 + (27 \div 3)^2 =$ $16 + 9^2 = 16 + 81 = 97$ Kyra probably squared the 3 before doing any other operation. Here is a possible incorrect solution: $(-4)^2 - 3[(-9) \div 3]^2 = 16 - 3[(-9) \div 9]$ = 16 - 3(-1) = 16 + 3 = 19

Extra Practice 4 – Master 2.20

Lesson 2.4 **1.** a) 4⁵ **b**) 5⁰ **c)** $(-2)^6$ **e)** $(-7)^2$ **d)** -6⁴ **f**) $(-9)^9$ **2. a)** 8² **b)** 10⁴ **c)** $(-1)^3$ **d**) -3° **f**) 11³ **e)** $(-9)^5$ **3.** a) 2° **c)** 6^2 **b)** $(-5)^{\prime}$ **4. a)** 10 **b)** –6 **c)** -24

5. a) $4^3 \div 4^2 + 2^4 \times 3^2 = 4 + 16 \times 9 = 148$ b) $3^2 + 4^2 \times 4^1 \div 2^3 = 9 + 64 \div 8 = 17$

c)
$$\frac{3^4}{3^3} + \frac{4^2 \times 4^0}{2^4} = 3 + \frac{16}{16} = 3 + 1 = 4$$

6. a) 1 000 000 =
$$10^3 \times 10^3$$

b) 1 000 000 000 = $10^3 \times 10^6$

c)
$$100 = \frac{10^3}{10^1}$$
 d) $1 = \frac{10^6}{10^6}$

- e) 1 000 000 000 000 = $10^3 \times 10^3 \times 10^6$
- 7. a) The exponents were multiplied instead of added. $5^3 \times 5^2 = 5^5$
 - **b)** The bases were multiplied. $2^3 \times 4^2 = 8 \times 16 = 128$
 - c) This solution is correct.
 - d) The exponent 3 was subtracted from the sum of exponents 2 and 4. $1^2 \times 1^4 - 1^3 = 1^6 - 1^3 = 1 - 1 = 0$

Master 2.24)

Extra Practice and Activating Prior Knowledge Sample Answers

e) The exponents were multiplied then divided instead of added and subtracted. $\frac{4^2 \times 4^4}{4^2 \times 4^1} = \frac{4^6}{4^3} = 4^3$

Extra Practice 5 – Master 2.21

Lesson 2.5

- 1. a) $3^4 \times 2^4$ b) $(-4)^2 \times 3^2$ c) $(-2)^3 \times (-4)^3$ d) $7^0 \times 11^0$ e) $10^3 \div 5^3$ f) $(-12)^2 \div (-6)^2$ g) $\frac{8^4}{4^4}$ h) $\frac{1^6}{10^6}$
- **2.** a) 3^8 b) 5^0 c) -7^4 d) $(-3)^6$
- **3.** $[(-3)^3]^2$ is positive because it is the square of a power, and the square of any number is positive. $[(-3)^3]^3$ is negative because it simplifies to $(-3)^9$, and the product of an odd number of negative factors is negative.
- 4. a) $(2^3 \times 2^1)^2 = (2^4)^2 = 2^8 = 256$ b) $(5^4 \div 5^2)^2 = (5^2)^2 = 5^4 = 625$ c) $[(-3)^0 \times (-3)^3]^2 = [(-3)^3]^2 = (-3)^6 = 729$ d) $(10^2)^4 \div (10^3)^2 = 10^8 \div 10^6 = 10^2 = 100$
- 5. a) $(3^2 \times 4^3)^2 (4^4 \div 4^2)^2 = (9 \times 64)^2 (4^2)^2$ = 576² - 4⁴ = 331 776 - 256 = 331 520 b) $(2^3 \div 2^2)^3 + (7^4 \times 7^3)^0 = 2^3 + 1 = 8 + 1 = 9$ c) $[(-1)^3]^4 - [(-1)^4 \div (-1)^3]^2 = (-1)^{12} - (-1)^2$ = 1 - 1 = 0
 - **d**) $(4^2 \times 4^3)^0 (3^2)^2 = 1 3^4 = 1 81 = -80$ **e**) $(5^2 \times 5^0)^3 + (2^5 \div 2^3)^3 = 5^6 + 2^6 = 15\ 625 + 15^6$
 - e) $(5^2 \times 5^0)^3 + (2^5 \div 2^3)^3 = 5^6 + 2^6 = 15\ 625 + 64 = 15\ 689$
 - **f)** $(10^6 \div 10^3)^2 + (2^3 \div 2^1)^4 = (10^3)^2 + (2^2)^4 = 10^6 + 2^8 = 1\ 000\ 000 + 256 = 1\ 000\ 256$
- 6. a) $(4^3 \times 2^2)^2 = 4^6 \times 2^4 = 4096 \times 16 = 65536$ b) $[(-10)^3]^4 = (-10)^{12} = 100000000000$ c) $(2^2 + 2^3)^2 = (4 + 8)^2 = 12^2 = 144$

Activating Prior Knowledge Master 2.25a

- **1. a)** 100 m² **b)** 16 cm²
 - **c)** 144 mm^2 **d)** 36 cm^2
- **2. a)** Students should draw a square with side length 1.
 - **b)** Students should draw a square with side length 3.
 - c) Students should draw a square with side length 8.
 - d) Students should draw a square with side length 11.
 - e) Students should draw a square with side length 2.
 - f) Students should draw a square with side length 9.
 - **g)** Students should draw a square with side length 10.
 - h) Students should draw a square with side length 4.
 - i) Students should draw a square with side length 6.
 - j) Students should draw a square with side length 12.
 - k) Students should draw a square with side length 20.
 - I) Students should draw a square with side length 15.

Activating Prior Knowledge Master 2.25b

- **1.** a) 80 b) -80 c) -5 d) 5
- **2.** a) -1 000 000 b) 10
- **3.** a) $(-3) \times (-9) = 27$ b) $6 \times (-3) = -18$ c) $36 \div (-6) = -6$

Activating Prior Knowledge Master 2.25c

l. a	a) 43	b)	-2
C	c) –6	d)	19

Activating Prior Knowledge Master 2.25a

What Is a Square Number?

When we multiply a number by itself, we square the number.

For example, the square of 7 is $7 \times 7 = 49$.

We can model a square number by drawing a square with an area that is equal to the square number.

Example

Draw a diagram to show that 25 is a square number.

A Solution

25 is a square number because it is the area of a square with side length 5.

Check

- 1. Determine the area of a square with each side length.
 - **a)** 10 m
 - **b)** 4 cm
 - **c)** 12 mm
 - d) 6 cm
- 2. On grid paper, draw a diagram to show that each number below is a square number.

a)	1	b)	9	c)	64
d)	121	e)	4	f)	81
g)	100	h)	16	i)	36
j)	144	k)	400	l)	225

Master 2.25b Activating Prior Knowledge

Multiplying and Dividing Integers

The product of two integers with the same sign is a positive integer. $3 \times 5 = 15$ (-3) × (-5) = 15

The product of two integers with different signs is a negative integer. $(-3) \times 5 = -15$ $3 \times (-5) = -15$

The quotient of two integers with the same sign is a positive integer. $28 \div 4 = 7$ $(-28) \div (-4) = 7$

The quotient of two integers with different signs is a negative integer. $(-28) \div 4 = -7$ $28 \div (-4) = -7$

The sign of a product with an even number of negative factors is positive. (-1)(-1)(-1)(-1)(-1)(-1) = 1

The sign of a product with an odd number of negative factors is negative. (-1)(-1)(-1)(-1)(-1) = -1

Example

Will each expression be positive or negative? How do you know?

a) (-2)(-2)(-2)(+2) **b)** $\frac{-6}{2}$ **c)** $(+10) \div (-5) \times (-4)$

A Solution

- a) The product of (-2)(-2)(+2) is negative because there is an odd number of negative factors.
- b) The quotient is negative because the integers have different signs.
- c) The expression is positive because there is an even number of negative factors.

Check

- 1. Determine each product or quotient.
 - **a)** (20)(4) **b)** (20)(-4) **c)** (-20) \div 4 **d)** $\frac{-20}{-4}$
- 2. Simplify each expression.
 - **a)** (+10)(-10)(-10)(-10)(+10)(+10) **b)** $\frac{(-10)(-10)(-10)}{(+10)(-10)}$
- 3. Fill in the blank to make each equation true. a) (-9) = 27 b) (-3) = -18 c) $36 \div = -6$

Master 2.25c

Activating Prior Knowledge

Order of Operations

Recall the order of operations with integers:

- Do the operations in brackets first.
- Multiply and divide, in order, from left to right.
- Add and subtract, in order, from left to right.
- When an expression is written as a fraction, the fraction bar indicates division.

The operations in the numerator and the denominator must be done first before dividing the numerator by the denominator.

Example 1

Evaluate: $[(-5) + (-4)] \div (-3) + (-2)$

A Solution

 $[(-5) + (-4)] \div (-3) + (-2)$ Do the operation in square brackets first. $= (-9) \div (-3) + (-2)$ Divide. =+3+(-2) Add. = 1

Example 2

Evaluate: $\frac{[21+(-5)] \times (-2)}{4(-2)}$

A Solution

 $[21+(-5)] \times (-2)$ Evaluate the numerator and denominator separately. 4(-2) $= \frac{16 \times (-2)}{2}$ Multiply. 4(-2) = _32 Divide. -8 = 4

Check

1. Evaluate. Show all the steps.

a)
$$(-15)(-3) + 14 \div (-7)$$

b) $\frac{15 - 12 \div 4}{-6}$
c) $\frac{[(-8) - (-2)] \times [6 + (-3)]}{(-15) \div (-5)}$
d) $[8 + (-3)] \times 3 + (-36) \div (-9)$