Practice - Using Exponents To Describe Numbers (Part 2)

Apply

15. In a children's story, Double Dan the Dragonfly is growing fast. His body length is doubling every month. At the beginning of the story, his length is 1 cm.

- a) Create a table to show how Dan's body length increases every month for ten months.
- b) What is his body length five months after the beginning of the story? Express your answer as a power. Then, evaluate.
- c) After how many months is his body length more than 50 cm?
- **16.** Arrange the following powers from least to greatest value: 1²², 3⁴, 4³, 2⁵, 7².

- **18.** Express 9 as a power where the exponent is 2 and the base is
 - a) positive
 - b) negative
- **19.** Explain what the following statement means using numerical examples:

Multiplication is a way to represent repeated addition, and powers are a way to represent repeated multiplication.

20. The power 7³ can be read as "seven cubed." Draw a picture of a cube with a volume of 7³ cubic units, or 343 cubic units. Label appropriate dimensions for the cube.

Extend

- **22.** Evaluate the powers of 5 from 5^3 to 5^{10} . Use only whole numbers as exponents.
 - a) What do you notice about the last three digits of each value?
 - **b)** Predict the last three digits if you evaluate 5⁴⁶.

Answer Key

15. a)	Month	Body Length (cm)
	Beginning	1
	1	2
	2	4
	3	8
	4	16
	5	32
	6	64
	7	128
	8	256
	9	512
	10	1024

b) $2^5 = 32$ cm **c)** After 6 months. **16.** 1^{22} , 2^5 , 7^2 , 4^3 , 3^4

18. a) 3^2 **b)** $(-3)^2$

Powers are a way to represent repeated multiplication.

For example, $3^5 = 3 \times 3 \times 3 \times 3 \times 3$

= 243 **20.** $V = 343 \text{ cm}^3$ 7 cm

7 cm

22.	Exponential Form	Value
	53	125
	54	625
	55	3 125
	56	15 625
	5 ⁷	78 125
	58	390 625
	59	1 953 125
	510	9 765 625

a) An even exponent has 625 as its last three digits. An odd exponent has 125 as its last three digits. **b)** 625