LAW OF CONSERVATION OF MASS REVIEW

In a chemical reaction, products are formed when the reactants undergo a change. These products usually look very different from the reactants. However, the total mass of the products is alwaySthe same as the total mass of the reactants. This law is called the ConServation of mass

- What is a closed system in terms of a chemical reaction?

-What is an open system in terms of a chemical reaction?

Some Practice Questions:

Examine the data for each of the following combustion experiments and answer the questions based on analysis of the data.
1.

> REACTANTS)
> Magnesium + Oxygen $\xrightarrow{\text { PRODUCT (S) }}$ Magnesium Oxide
> $48.6 \mathrm{~g}+32.0 \mathrm{~g}=80.6 \mathrm{~g}$

1. What is the mass of each reactant?

$$
M_{g}=48.6 \mathrm{~g} \text { Oxygen }=32.0 \mathrm{~g}
$$

2. What is the mass of the product?

3. What is the total mass of reactants?

$$
80.69
$$

4. Does this experimental data support the Law of Conservation of Mass? Explain.

5. Based on the Law of Conservation of Mass, predict the minimum amount of magnesium that will react with all 16.0 grams of oxygen to produce 40.3 grams of magnesium oxide.

$$
\begin{aligned}
& 40.3 g-16.0 g \\
& M g=24.3 \mathrm{~g}
\end{aligned}
$$

REACTANT (S)
 Magnesium + Oxygen
 $12.2 \mathrm{~g}+8.0 \mathrm{~g} \longrightarrow$? g

PRODUCTS)

Magnesium Oxide

1. Assuming that magnesium and oxygen will react completely with one another, predict the mass of magnesium oxide that will be produced.

$$
\begin{aligned}
& 12.2 g+8.0 g \\
& M g O=20.2 g
\end{aligned}
$$

1. A solid mass of 25 g is mixed with 60 g of a solution A chemical reaction takes place and a gas is produced. Mas The final mass of the mixture is 75 g . What was the mass of gas released?
reactants: $259 A+60 \mathrm{~g} B$

$$
\text { products: } 75 g c+\text { gas }
$$

$$
\begin{gathered}
A+B \rightarrow C+g a s \\
2-5 \mathrm{~g}+60 \mathrm{~g} \rightarrow 75 \mathrm{~g}+9 \mathrm{gas} \\
85 \mathrm{~g}-75 \mathrm{~g}=10 \mathrm{~g}
\end{gathered}
$$

2. If 100 g of one substance reacts with 70 g of ant other substance, what will be the mass of the products after the reaction?

$$
\log +70 \mathrm{~g}=170 \mathrm{~g}
$$

3. A student adds 15 g of baking soda to 10 g of acetic acid in a beaker. A chemical reaction occurs and a gas is given off. After the reaction, the mass of the products remaining in the beaker is 23 g . Has mass been conserved in this reaction? Explain your answer.

4. Does a glass of pop have a greater, smaller, or identical mass after it has sat out on the table overnight? Explain your answer.
